Modelo edificante

A retailer has collected some data from its historical promotions outcomes in terms of customers, purchases, recency (last time customer purchased), and conversion to promotions (if the customer has purchased or not). With this historical information, he wants to know which customers are more likely to purchase and what products. Machine learning can learn a model relating these collected features to customer conversion. They can use this model as a tool for planning their next promotional campaigns. This retailer has collected the following data:

  • recency: how recently a customer has made a purchase
  • history: sum of all purchases
  • used_discount: if customer have used a discount campaign before
  • used_bogo: if customer have used a bogo (“buy one get one”) campaign before
  • zip_code: some demographical information
  • is_referral: referring someone for some product
  • channel: purchase channel
  • offer: Three options [“No offer”, “Discount” os “Buy one get one”]
  • conversion: Two options [0: No, 1:Yes] TARGET
Logo NextBrain

Nuestra misión es hacer de NextBrain un espacio en el que los seres humanos trabajen junto con los algoritmos más avanzados para ofrecer una visión superior de los datos que cambie las reglas del juego. No-code Machine Learning

Oficinas

Europa
Paseo de la Castellana, n.º 210, 5º-8
28046 Madrid, Spain
Número de teléfono: spain flag +34 91 991 95 65

Australia
Level 1, Pier 8/9,23 Hickson Road
Walsh Bay, NSW, 2000
Número de teléfono: spain flag +61 410 497229

Horas de apertura (CET)

Lunes—Jueves: 8:00AM–5:30PM
Viernes: 8:00AM–2:00PM


EMEA, America

Soporte de chat en vivo
Contacte con nuestro equipo de Ventas